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Abstract—The minimal sampling frequency required to achieve
the rate-distortion function of a Gaussian stationary process is
analyzed. Although the Nyquist rate is the minimal sampling
frequency that allows perfect reconstruction of a bandlimited
signal from its samples, relaxing perfect reconstruction to a
prescribed distortion may allow a lower sampling frequency
to achieve the optimal rate-distortion trade-off. We consider
a combined sampling and source coding problem in which an
analog Gaussian source is reconstructed from its rate-limited
sub-Nyquist samples. We show that each point on the distortion-
rate curve of the source corresponds to a sampling frequency fDR
smaller than the Nyquist rate, such that this point can be achieved
by sampling at frequency fDR or above. This can be seen as an
extension of the sampling theorem in the sense that it describes
the minimal amount of excess distortion in the reconstruction due
to lossy compression of the samples, and provides the minimal
sampling frequency required in order to achieve that distortion.

I. INTRODUCTION

The minimal sampling frequency required for perfect recon-
struction of an analog process from its samples is given by the
celebrated works of Shannon, Nyquist, Whittaker, Kotelnikov
and Landau. However, given a stationary Gaussian process
with a known power spectral density (PSD), the sampling
theorem does not address the error in reconstruction if the
samples are quantized, or more generally, compressed in a
lossy manner.

The error due to sampling and lossy compression can be
analyzed by considering the combined sampling and source
coding problem described in Fig. 1. In this model, if the analog
source X(·) is sampled above its Nyquist rate, then the signal
can be perfectly reconstructed from its samples. Hence, the
optimal trade-off between the source coding rate and distortion
is described by the distortion-rate function (DRF) DX (R) of the
analog source. We ask the following question; given a source
coding rate constraint R (for example, as a result of using an
R bit quantizer), do we still need to sample at the Nyquist rate
in order to achieve DX (R), or is a lower sampling frequency
sufficient to describe X(·) up to an average distortion DX (R)?
In this work we establish a sampling frequency which is in
general lower than the Nyquist frequency, such that sampling
at this frequency achieves the distortion-rate bound. That
is, for a Gaussian stationary process with known statistics,
sampling below the Nyquist rate is possible without additional
distortion over that given by Shannon’s distortion-rate function
associated with Nyquist rate sampling.
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Fig. 1: Combined sampling and source coding model.

A. Background and Related Work

The celebrated Shannon-Nyquist-Kotelnikov-Wittaker
sampling theorem asserts that a bandlimited signal can be
perfectly reconstructed from its uniform samples at frequency
fs > fNy, where fNy is twice the bandwidth of the signal.
Landau [1] showed that perfect reconstruction is possible
iff the sampling frequency fs exceeds the support of the
spectrum of the signal, even if the sampling instants are
non-uniformly placed (in which case we replace fs with the
Beurling density of the sampling set). For simplicity, in the
remainder of this paper we will use the Nyquist rate to refer to
the support of the spectrum, which is the minimum sampling
frequency required for perfect reconstruction. In the case of
a second order stationary random processes under a mean
squared error (MSE) criterion, the Nyquist rate condition for
perfect reconstruction is given in terms of the power spectral
density (PSD) of the process [2]. Perfect reconstruction of
signals sampled below their Nyquist rate has proven to be
possible under further assumptions on the structure of the
analog source, such as bandpass signals with sparse unknown
spectral occupancy [3]. In this work we consider sub-Nyquist
sampling of Gaussian stationary processes with a known
PSD, and relax the requirement for perfect reconstruction to
a given average quadratic distortion.

The optimal trade-off between quadratic average distortion
and the source coding rate in any description of a Gaussian
stationary process X(·) is described by its quadratic DRF
which was derived by Pinsker [4]. This was extended by
Dubroshin and Tsybakov [5] to the case where the information
on the source at the encoder is available only through a
different process jointly stationary with X(·), rather than X(·)
itself. Such a problem belongs to the regime of indirect or



remote source coding [6, Sec. 4.5.4].

The problems of indirect source coding and sub-Nyquist
reconstruction were recently combined in [7], in which the
combined sampling and source coding problem of Fig. 1 was
considered. The quantities of merit in this problem are the
source coding rate R, the average sampling frequency fs, and
the average distortion D. The exact relation among D, R and
fs under uniform filter-bank sampling is the main result of [7].
This relation is given by the indirect distortion-rate function
(iDRF) of a Gaussian process given its samples, denoted by
DX |Y ( fs,R). One conclusion from this characterization is that
for a given sampling frequency fs, a bound DX ( fs,R) on the
iDRF is obtained by reverse water-filling over the part of the
spectrum of Lebesgue measure fs with maximum energy.

In [8] it was shown that the bound DX ( fs,R) cannot be
improved by nonuniform sampling or by a wide class of
pre-sampling operations, when we replace fs with the den-
sity of the non-uniform sampling set. These results establish
DX ( fs,R) as a fundamental quantity in information theory
and signal processing, which describes the amount of excess
distortion incurred due to encoding based on the information
in any time preserving sampling scheme.

B. Contribution

In this work we prove an important property of DX ( fs,R)
which asserts that for a given point (R,D) on the DRF of X(·),
there exists a frequency fDR such that the equality

DX (R) = DX ( fs,R)

is attained for all fs � fDR which is typically less than the
Nyquist rate fNy. This critical frequency fDR depends on R
and the PSD SX ( f ), and it is strictly smaller than the Nyquist
rate if SX ( f ) is not constant over its entire bandwidth. In
addition, fDR increases monotonically with R and reduces to
the Nyquist rate of X(·) as R ! •. We note that from the
definition of DX ( fs,R) it follows that DX (R) = DX ( fs,R) for
any fs � fNy, since then the sampling theorem asserts that
there is no information loss in observing Y [·] over X(·). As
illustrated in Fig. 2, our main result says that the condition
fs � fNy can be relaxed to fs � fDR if we work under a source
coding rate constraint R. In other words, there is no further
information loss due to sub-Nyquist sampling compared to
the distortion-rate trade-off. This result can be seen as an
extension of the Shannon-Nyquist sampling theorem and the
characterization of the minimal MSE mmse( fs) in estimating
a signal from its samples at frequency fs, in the sense that
it describes the lowest sampling frequency fDR that achieves
D(R).

The rest of this paper is organized as follows: in Section II
we review results from [7] and define the function DX ( fs,R).
Our main result is described in Section III. Concluding re-
marks are provided in Section IV.
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Fig. 2: Minimal distortion versus sampling frequency. If R <
•, then DX (R) is attained for fs � fDR. Here mmseX ( fs) =
limR!• D( fs,R).

II. MINIMAL DISTORTION UNDER A COMBINED
SAMPLING AND SOURCE CODING MODEL

In this section we describe the combined sampling and
source coding problem depicted in Fig. 1, which was consid-
ered in [7]. The source X (·)= {X (t) , t 2 R} is a real Gaussian
stationary process with a known PSD

SX ( f ),
Z •

�•
E [X(t + t)X(t)]e�2pit f dt,

and variance s2
X , R •

�• SX ( f )d f <•. The sampler receives the
process X(·) as an input and produces a discrete-time process
Y [·] = {Y [n], n 2 Z}. The specific structure of the sampler will
be described in the sequel. The distortion between a source
realization x(·) and its reconstruction x̂(·) is given by

d (x(·), x̂(·)) = lim
T!•

1
2T

Z T

�T
(x(t)� x̂(t))2 dt.

The indirect distortion-rate function (iDRF) of X(·) given Y [·],
denoted by DX |Y ( fs,R), is defined to be the minimal average
quadratic distortion:

DX |Y ( fs,R) = inf
Y R�!X̂

Ed
�
X(·), X̂

�

where the infimum is taken over all mappings from Y [·] to
X̂(·) such that the mutual information rate I

�
Y [·]; X̂(·)

�
is

limited to R/ fs bits per sample, where fs is the average
sampling frequency defined by the sampler. Although
implicit in our notation, DX |Y ( fs,R) depends on the sampling
mechanism through the samples Y [·].

In the case where the sampler in Fig.1 is uniform without
a pre-processor, i.e., Y [n] = X(n/ fs) for all n 2 Z, the iDRF
of X(·) is given by ([7])

R(q) = 1
2

Z fs
2

� fs
2

h⇣
logfSX ( f )/q

⌘i+
d f , (1a)

DX |Y (q) = s2
X �

Z fs
2

� fs
2

h
fSX ( f )�q

i+
d f , (1b)

where [x]+ = max{0,x} and

fSX ( f ) =
Âk2Z S2

X ( f � fsk)
Âk2Z SX ( f � fsk)

. (2)
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Fig. 3: Water-filling interpretation of (1). The overall distor-
tion is the sum of the red and the blue areas.
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Fig. 4: Uniform filter-bank sampler.

The solution (1) has the water-filling interpretation illustrated
in Fig. 3. If the support of SX ( f ) is contained in the interval
(� fs/2, fs/2), then1 fSX ( f ) = SX ( f ), and (1) reduces to

RX (q) =
1
2

Z •

�•
log+ [SX ( f )/q ]d f , (3a)

DX (q) =
Z •

�•
min{SX ( f ),q}d f , (3b)

which is the reverse water-filling solution of Pinsker [4].
Another extreme case of (1) is obtained when R ! •. In this
case DX |Y ( fs,R) reduces to the minimal mean squared error
(MMSE) achievable in estimating the source from its samples:

mmseX |Y ( fs) = s2
X �

Z fs
2

� fs
2

fSX ( f )d f , (4)

as derived in [9] and [10].

Assume now that the sampler in Fig. 1 is the filter-bank
sampler of Fig. 4, which consists of P sampling branches
each with a pre-sampling filter Hp( f ) and a uniform pointwise
sampler of sampling frequency fs/P. That means that the
processes Y1[·], . . . ,YP[·], defined by

Yp[n],
Z •

�•
hi(nP/ fs � t)X(t)dt,

are available at the encoder. For a given PSD SX ( f ), a
source coding rate R and an average sampling frequency fs,

1We interpret expression (2) and similar expressions henceforth as zero if
both nominator and denominator are zero.
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Fig. 5: Water-filling interpretation of (5). The overall distor-
tion is the sum of the red and the blue areas. The set F?( fs)
is the section below the blue/yellow area.

the distortion can be reduced by an optimal choice of the
pre-sampling filters H1( f ), . . . ,HP( f ). The optimal filters are
chosen to eliminate aliasing on each sampling branch and
at the same time to pass the part of the spectrum with the
highest energy, as described in [7]. Denote by D?

X (P, fs,R) the
iDRF of X(·) given Y [·] obtained under this optimal choice
of H1( f ), . . . ,HP( f ). As the number of sampling branches P
goes to infinity, the part of the spectrum that is not blocked by
the filters is a set F?( fs) of Lebesgue measure fs with highest
energy. That is, denote

DX ( fs,R), lim
P!•

D?
X (P, fs,R).

An expression for DX ( fs,R) is given by

R(q) = 1
2

Z

F?( fs)
log+ [SX ( f )/q ]d f , (5a)

DX ( fs,q(R)) = mmseX ( fs)+
Z

F?( fs)
min{SX ( f ),q}d f (5b)

= s2
X �

Z

F?( fs)
[SX ( f )�q ]+ d f ,

where the set F?( fs) maximizes the integral
Z

F
SX ( f )d f

over all measurable sets F ⇢ R of Lebesgue measure not
exceeding fs. In (5) we define

mmseX ( fs), s2
X �

Z

F?( fs)
SX ( f )d f =

Z

R\F?( fs)
SX ( f )d f ,

which gives a bound on the minimal MSE in estimating
X(·) from it samples under filter-bank sampling with average
sampling frequency fs. Fig. 5 illustrates a water-filling
interpretation of (5). The functions D?

X (P, fs,R) and DX ( fs,R)
are depicted in Fig. 6.

As discussed in [7], an operative scheme that achieves the
distortion-rate bound DX ( fs,R) is as follows:

(i) Filter-bank sampling at average frequency fs with op-
timized pre-sampling filters and a sufficient number of
sampling branches P.
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of the source coding rate R and source with a PSD given
in the small frame. As fs increases, D?

X (P, fs,R) converges to
DX (R) (with equality guaranteed for fs � fNy). As P increases,
D?

X (P, fs,R) converges to DX ( fs,R).

(ii) Minimal MSE estimation of X(·) from Y [·].
(iii) Vector quantizer of source coding rate R that implements

the optimal test channel in the Gaussian distortion-rate
function [11] of the estimator of X(·) from Y [·].

The function DX ( fs,R) describes an achievable lower
bound for the combined sampling and source coding problem
of Fig. 1. It was shown in [8] that the bound DX ( fs,R) still
holds even if we consider nonuniform sampling where we
replace fs with the Beurling density [12] of the sampling
set. As a result of the characterization of time preserving
sampling systems in [13], the function DX ( fs,R) is said to
describe the amount of information lost under any meaningful
practical sampling system.

It follows from (5) that for fs > fNy, mmseX ( fs) = 0 and
DX ( fs,R) = DX (R), where DX (R) is given by (3). In the next
section we will see that this equality also holds for fs � fDR,
where fDR is usually strictly smaller than the Nyquist rate of
X(·).

III. MAIN RESULT

Our main result is summarized in the following theorem:
Theorem 3.1: Let X(·) be a Gaussian stationary process with

PSD SX ( f ). For each point (R,D) 2 [0,•)⇥ (0,s2
X ) on the

distortion-rate curve of X(·) associated with a water-level q , let
Fq be the set of frequencies f 2R such that SX ( f )> q . Denote
by fDR the Lebesgue measure of Fq . Then for all fs � fDR,

DX (R) = DX ( fs,R),

where DX (R) is the distortion-rate function of X(·) and
DX ( fs,R) is the optimal indirect distortion-rate function of
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Fig. 7: An illustration of the proof of Theorem 3.1: the dis-
tortion is the sum of the red and the blue areas in each figure.
(a) Fix R and find DX (R) from (3). (b) DX ( fs,R)> DX (R) for
fs < fDR. (c) fs = fDR. (d) DX ( fs,R) = D(R) for all fs � fDR.

X(·) given its samples at frequency fs.

Proof sketch: We only provide here a sketch of the proof
from which a rigorous proof; a rigorous proof based on this
sketch can be found in [14]. In Fig. 7-(a) we fix a point (R,D)
on the distortion rate curve of X(·), which is given by (3). The
set Fq = { f 2 R : SX ( f )> q} is the support of the yellow
area in Fig. 7-(a). The sampling frequency fDR is given by
the Lebesgue measure of Fq . Fig. 7-(b) shows the function
DX ( fs,R) for fs < fDR, where the overall distortion is the sum
of the mmseX ( fs) term given by the red area, and the water-
filling term given by the blue area. Figs. 7 (c) and (d) show
the function DX ( fs,R) for fs = fDR and fs > fDR, respectively.
The assertion of Theorem 3.1 is that the sum of the red area
and the blue area stays the same for any fs � fDR.

From the definition of the function DX ( fs,R) it directly
follows that DX ( fs,R) = DX (R) for all fs � fNy. Theorem
3.1 implies that this equality can be further extended to
frequencies below fNy if the support of Fq is strictly smaller
than the support of SX ( f ). If SX ( f ) is the rectangular PSD
in Fig. 8, then Fq coincides with the support of SX ( f ) and
fDR = fNy for all source coding rates R. If SX ( f ) varies over
its support, then there exists a region of values of R such that
fDR < fNy. Fig. 7-(d) shows that within this region, the error
as a result of sampling (red) can be traded with error as a
result of the lossy representation of the samples (blue) such
that the overall distortion is unaffected. Since optimal lossy
compression is achieved by a vector quantizer, Theorem 3.1
implies a trade-off between the vector quantizer resolution and
the sampling frequency in schemes that approaches the DRF.
A similar trade-off is studied in the case of a scalar quantizer
in [14].

As R goes to infinity, DX ( fs,R) converges to mmseX ( fs),
the water-level q goes to zero, the set Fq coincides with the
support of SX ( f ) and fDR converges to fNy. Theorem 3.1 then
implies that mmseX ( fs) = 0 for all fs � fNy. In summary,
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Fig. 8: The frequency fDR as a function of the source coding
rate R for the PSDs given in the small frames.

Theorem 3.1 extends the sampling theorem in the sense that
it describes the necessary sampling frequency to achieve a
prescribed point on the distortion-rate curve.

In the following example the exact dependency of fDR on
R and D is found for the triangle PSD of Fig. 7.

Example 1 (triangle PSD): Consider a Gaussian stationary
source with PSD

SX ( f ) = 1�min{| f |,0} .

Let (R,D) 2 [0,•)⇥ [0,1] be a point on the distortion-rate
curve of X(·). From Fig. 7 we see that Fq = [�1+q ,1�q ]
and fDR = 2�2q . The relation between R to fDR  2 is given
by

R=
1
2

Z fDR
2

� fDR
2

log

 
1� | f |
1� fDR

2

!
d f =

1
log2

 
log

1
1� fDR

2

� fDR

2

!
.

(6)
Expressing fDR as a function of D leads to fDR =

p
1�D.

Fig. 8 shows fDR as a function of R according to (6) and
similar relations for various other PSDs.

IV. CONCLUSIONS

We considered a combined sampling and source coding
model in which an analog source is described from its
rate-limited samples. Under this model, sampling above the
Nyquist rate achieves the regular distortion-rate trade-off given
by the distortion-rate function of the analog source. We have
shown that for a source with a PSD which varies over its
support, the same distortion-rate trade-off can be achieved by
sampling above a critical frequency which is strictly smaller
than the Nyquist rate. This critical frequency depends on the
particular point on the distortion-rate curve and the PSD of
the source. It increases as the source coding rate increases
and converges to the Nyquist rate as the source coding rate
goes to infinity.

This implies that with an optimized filter-bank sampler,
sampling below the Nyquist rate does not degrade performance
in the case where lossy compression of the samples is
introduced. Since lossy compression due to quantization is
an inherent part of any analog to digital conversion scheme,
our work suggests that sampling below the Nyqusit rate is
optimal in terms of minimizing distortion in many practical
scenarios.

There is still an interesting difference between practical
analog to digital schemes and the combined sampling and
source coding problems considered here and in [7] which re-
lates to oversampling: While oversampling above the Nyquist
rate does not affect the indirect distortion-rate function of a
source given its samples, practical analog to digital schemes
use oversampling to reduce quantization error [15]. An attempt
to bridge this gap is the subject of a future work [14].
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